
Paris

Smart VSCP relay controller

Reversion 1.0 - 2012-01-09

Abstract

Paris is a relay module that connects to a CAN4VSCP bus and can control up
to seven external relays which can be up to 1/2 a kilometer from the controller.
The module can be attached to a standard DIN Rail or be mounted directly
on a wall (ordered separately). The module fully adopts to the CAN4VSCP
speci�cation and can be powered directly over the bus with a 9 - 28VDC power
source. It has a rich register set for con�guration and many information events
de�ned. It also have a decision matrix for easy dynamic event handling.

Grodans Paradis AB
Brattbergavägen 17
820 50 LOS
SWEDEN
web: http://www.auto.grodansparadis.com
email: info@grodansparadis.com
phone: +46 8 40011835

Copyright © 2011-2012, Grodans Paradis AB, All rights reserved

All boards produced by Grodans Paradis AB are ROHS com-
pliant.

Disclaimer: © 2011-2012 Grodans Paradis AB. All rights reserved. Gro-
dans Paradis AB®, logo and combinations thereof, are registered trademarks
of Grodans Paradis AB. Other terms and product names may be trademarks of
others. The information in this document is provided in connection with Gro-
dans Paradis AB products. No license, express or implied or otherwise, to any
intellectual property right is granted by this document or in connection with
the sale of Grodans Paradis AB products. Neither the whole nor any part of
the information contained in or the product described in this document may
be adapted or reproduced in any material from except with the prior written
permission of the copyright holder. The product described in this document
is subject to continuous development and improvements. All particulars of the
product and its use contained in this document are given by Grodans Paradis
AB in good faith. However all warranties implied or expressed including but
not limited to implied warranties of merchantability or �tness for purpose are
excluded. This document is intended only to assist the reader in the use of the
product. Grodans Paradis AB. shall not be liable for any loss or damage arising
from the use of any information in this document or any error or omission in
such information or any incorrect use of the product.

1

http://www.auto.grodansparadis.com
http://info@grodansparadis.com

Contents

1 Paris - smart VSCP relay module 6

1.1 Most current information . 6
1.2 The raw facts . 7
1.3 Hardware . 7
1.4 Cable and connectors . 9

1.4.0.1 RJ-XX pin-out 9
1.4.1 Cable length . 11
1.4.2 Termination . 11

1.4.2.1 Why are terminators required? 11
1.4.3 Daisy chain connector . 12
1.4.4 Power the module . 12

1.5 Installing the module . 12
1.5.1 Termination block pin-out 13

1.6 Updating �rmware . 14
1.6.1 Update �rmware using the ICP connector 14
1.6.2 Update �rmware with VSCP Works 14

1.7 Con�gure the module? . 15
1.7.1 Zone/sub-zone . 15
1.7.2 Functionality for the relays 15
1.7.3 Set/get relay state with register read/writes 16
1.7.4 Set/get relay state using the decision matrix 16

1.7.4.1 You want to trigger on a speci�c event. 17
1.7.4.2 You want to trigger on any event you get from

a speci�c module. 17
1.7.5 Pulsing outputs . 17
1.7.6 Protection timer . 18
1.7.7 Alarm . 18

1.8 Registers . 18
1.8.1 Zone registers . 18
1.8.2 Relay status registers . 19
1.8.3 Relay control registers . 19
1.8.4 Relay pulse time registers 20
1.8.5 Relay protection time registers 21
1.8.6 Relay zone information 21
1.8.7 Registers for decision matrix 22

1.9 Decision matrix . 22
1.9.1 Action = 0(0x00) . 22
1.9.2 Action = 1(0x01) . 22

2

1.9.3 Action = 2(0x02) . 22
1.9.4 Action = 3(0x03) . 22
1.9.5 Action = 4(0x04) . 22
1.9.6 Action = 5(0x05) . 23
1.9.7 Action = 6(0x06) . 23
1.9.8 Action = 7(0x07) . 23
1.9.9 Action = 8(0x08) . 23
1.9.10 Action = 9(0x09) . 23
1.9.11 Action = 10(0x0a) . 23
1.9.12 Action = 11(0x0b) . 23
1.9.13 Action = 12(0x0c) . 23
1.9.14 Action = 13(0x0d) . 23
1.9.15 Action = 14(0x0e) . 23
1.9.16 Action = 15(0x0f) . 23
1.9.17 Action = 16(0x10) . 23

1.10 Alarm register . 24
1.11 Events . 24

1.11.1 On Event . 24
1.11.1.1 Package . 24

1.11.2 O� Event . 24
1.11.2.1 Package . 24

1.11.3 Stopped Event . 25
1.11.3.1 Package . 25

1.11.4 Started Event . 25
1.11.4.1 Package . 25

1.11.5 Alarm Event . 25
1.11.5.1 Package . 25

1.12 Where can I �nd the source code? 26
1.13 Appendix A - Mandatory VSCP registers. 26

3

List of Figures

1.1 Schema for the Paris relay module 8
1.2 Road map to module . 9
1.3 RJ-45 pin out . 10
1.4 CAN4VSCP bus with drops and terminations 11
1.5 Termination . 11
1.6 Daisy chain connector . 12
1.7 Pin-out for termination block . 13
1.8 Connection of relay . 14

4

List of Tables

1.1 The raw facts . 7
1.2 RJ-XX pin-out . 10
1.3 class/type �lter . 16
1.4 VSCP mandatory registers . 27

5

Chapter 1

Paris - smart VSCP relay

module

Paris is a relay module that connects to a CAN4VSCP bus and can control
up to seven external relays. The module can be attached to a standard DIN
Rail or be mounted directly on a wall (ordered separately). The module fully
adopts to the CAN4VSCP speci�cation and can be powered directly over the
bus with a 9-28V DC power source. It has a rich register set for con�guration
and many information events de�ned. It also have a decision matrix for easy
dynamic event handling.

VSCP CAN modules are designed to work on a VSCP4CAN bus which use
ordinary RJ-45 connectors and is powered with 9-28V DC over the same cable.
This means there is no need for a separate power cable. All that is needed is
a CAT5 or better twisted pair cable. Buss length can be a maximum of 500
meters with drops of maximum 24 meters length (up to a total of 120 meters).
As for all VSCP4CAN modules the communication speed is �xed at 125 kbps.

All VSCP modules contains information of there own setup, manual, hard-
ware version, manufacturer etc. You just ask the module for the information
you need and you will get it. When they are started up they have a default
functionality that often is all that is needed to get a working setup. If the mod-
ule have something to report it will send you an event and if it is setup to react
on a certain type of event it will do it's work when you send event(s) to it.

1.1 Most current information

You can �nd the most current information about the Paris relay module at
http://www.auto.grodansparadis.com/paris/paris.html. On the site you can
also �nd links to the latest �rmware and Module Description File (MDF) for
the device as well as schematics and recipes for its use. This information is of
course pointed to from the MDF �le which you can locate from the module itself
reading it's standard registers.

6

http://www.auto.grodansparadis.com/paris/paris.html

Parameter Value

Supply voltage 9-28VDC
PCB Size 42 mm x 72mm
Power requirements 0.1W + relay driver power if used.
Communication VSCP4CAN (CAN), 125kbps
Max sink capacity (each relay) 500 mA, 50V
Max relays 7

Table 1.1: The raw facts

1.2 The raw facts

1.3 Hardware

7

Figure 1.1: Schema for the Paris relay module

8

Figure 1.2: Road map to module

Some key positions on the module is outlined in the �gure below

1.4 Cable and connectors

The unit is powered over the CAN4VSCP bus. The CAN4VSCP normally uses
CAT5 or better twisted pair cable. You can use other cables if you which. The
important thing is that the CANH and CANL signals uses a twisted cable. For
connectors you can use RJ10, RJ11, RJ12 or the most common RJ45 connectors.
There are di�erent versions

1.4.0.1 RJ-XX pin-out

RJ-11/12/45 pin-out

Always use a pair of wires for CANH/CANL fort best noise immunity. If
the EIA/TIA 56B standard is used this condition will be satis�ed. This is good
as most Ethernet networks already is wired this way.

9

Pin Use RJ-11 RJ-12 RJ-45 Patch Cable wire
color T568B

1 +9-28V DC RJ-45 Orange/White
2 1 +9-28V DC RJ-12 RJ-45 Orange
3 2 1 +9-28V DC RJ-11 RJ-12 RJ-45 Green/White
4 3 2 CANH RJ-11 RJ-12 RJ-45 Blue
5 4 3 CANL RJ-11 RJ-12 RJ-45 Blue/White
6 5 4 GND RJ-11 RJ-12 RJ-45 Green
7 6 GND RJ-12 RJ-45 Brown/White
8 GND RJ-45 Brown

Table 1.2: RJ-XX pin-out

Figure 1.3: RJ-45 pin out

10

Figure 1.4: CAN4VSCP bus with drops and terminations

Figure 1.5: Termination

1.4.1 Cable length

CAN4VSCP always communicate with 125kbps. This means that if you use a
good quality cable it can be up to a maximum of 500 meters using AWG24 or
similar (CAT5) . Actual length depend on the environment and other parame-
ters. Drops with a maximum length of 24 meters can be taken from this cable
and the sum of all drops must not exceed a total of 120 meters.

1.4.2 Termination

The CAN4VSCP bus, as all CAN based networks, should be terminated with a
120 ohms resistor between CANH and CANL at both ends of the cable.

If you use CAT5 this termination should be placed between the blue -
blue/white cables at both end of your bus.

On the board there is a jumper for an on-board terminator. See �gure above.

1.4.2.1 Why are terminators required?

Terminators are needed to cancel signal echos in the cable. In short you get less
noice in the cable if you use them. It is recommended to use them even if at

11

Figure 1.6: Daisy chain connector

125 kbit it is possible that your bus will work anyway.

1.4.3 Daisy chain connector

The daisy chain connector is a pin-header that can be used as an easy way
to daisy chain several modules in a cabinet or similar. You just connect the
modules together with a straight cable. The pin-out is

1.4.4 Power the module

You normally power the module through the RJ45 connector over the CAN4VSCP
bus. See 1.4.0.1 for a description of which pins to use for power and ground.
The voltage range is +9VDC - 28VDC. The current need depend on how many
modules you want to power.

An alternative way to power the module is through the daisy chain connector
described above. Just connect +9V - 28V to it's pin 1 and ground to pin 4.
Needless to say you can't have power supplied by the CAN4VSCP bus at the
same time.

1.5 Installing the module

Connect the module to the CAN4VSCP bus. The red led on the module should
light up indicating that the device is powered. If this is the �rst time you start
up the module the green lamp next to the initializing button will start to blink.
This means that the module is trying to negotiate a nickname address with the
rest of the modules on the bus. When it found a free nickname the green led
will light steady. If the green led does not start to blink press the initialization
button until it does. Now your module is ready to use.

You have to decide what power source you should use for your relays. On
position 12 of the connectors on the board you can �nd +5V which can be used

12

Figure 1.7: Pin-out for termination block

for this purpose. If you want to use +5V install the jumper JP1. Often however
+5V is a to low voltage to control relays. You need +12V or even +24V. This
is OK. With the Paris module it is possible to use up to +50V DC. Before
you connect this external voltage make sure that jumper JP1 is not

installed.

On position 10/11 you have the supply voltage for the module available.
This is +9VDC - 28VDC and can also be used as your relay voltage.

1.5.1 Termination block pin-out

The individual positions for the twelve position termination block is numbered
from the left (looking into it) as in the �gure below.

Ground, +5V and the power for the module is available from the board
and the seven relay control positions. If you plan to use relays that can be
controlled with +5V just install jumper JP1 and connect +5V to the relays.
Normally however you need to have a higher voltage such as +12V or +24V
to control the the relays. In this case the JP1 jumper should be uninstalled.
Connect the relay voltage (which can be taken from position 10/11 if a suitable
voltage is used to power the module) to your relay and to position 2 of the
termination block. By doing this you activate the �y-back protection diodes

13

Figure 1.8: Connection of relay

which protects the circuits from inductive loads. If you just have an resistive
load you don't have to do this connection but there is no harm if you use it
anyway.

The power used to power the Paris module is a perfect candidate for the
relay voltage. It is available on the terminal block position 10/11.

1.6 Updating �rmware

There is two ways you can use to update the �rmware of the module. You
can program the device using the programming socket on board or you can use
VSCP Works to remotely program the device.

1.6.1 Update �rmware using the ICP connector

The �rmware of a circuit equipped with a Microchip microprocessor usually
can be programmed in circuit. That is when it is mounted on a printed circuit
board. This is also true for the Paris relay module which have the programming
connector on-board (J3). If you have a programmer for Microchip processors
(Real ICE, ICD-2, ICD-3, PICKIT-2, PICKIT3 or other) you can program your
own �rmware or the latest o�cial �rmware into the module using MPLAB or
similar tools. You can always �nd a link to the latest �rmware on the Paris relay
module home page (http://www.auto.grodansparadis.com/paris/paris.html).

1.6.2 Update �rmware with VSCP Works

When a module is installed in a remote location or if you don't have a Microchip
programmer you can program the module using the built in boot-loader. This

14

http://www.auto.grodansparadis.com/paris/paris.html

can be done with VSCP Works a program that can be run on the Windows
or the Linux platform and can perform and can perform di�erent maintenance,
con�guration and status checks of VSCP modules. If you have not installed the
VSCP & Friends package it is time to do so now. You can always �nd the latest
version on the VSCP projects download page (http://vscp.org/downloads.php).

The boot loader process using VSCP Works is described in section 16.4 of
the VSCP speci�cation. The Paris relay module uses the PIC1 boot loader.

1.7 Con�gure the module?

You con�gure a VSCP module by writing content into the modules registers.
You can do this manually or with the wizard available in VSCP works. Using
the wizard is absolutely the easiest way to use.

1.7.1 Zone/sub-zone

You should always plan your overall structure. The zone and the sub-zone
registers found in the �rst two register positions can help you here. Think of
a zone as a house, �oor plan or similar and sub-zone as a room or a location.
Note that this is not an address. It's a way to group functionality together.
Each relay can belong to it's own sub-zone. Set it in register 50-56.

1.7.2 Functionality for the relays

As you may expect the main functionality for the Paris relay module is the
possibility to turn a relay on or o�. Even if this is the main functionality there
is some extra functionality available. Each relay have a control byte with �ags
(bits) which control di�erent functionality for each relay. The bits have the
following meaning

� bit 7 - Must be set to one to make it possible to control the relay. Both
register writes, pulse and actions are ignored when the bit is set to zero.

� bit 6 - If set a STOPPED event (CLASS=20, TYPE=24) will be sent
when the relay goes to it's inactive state.

� bit 5 - If set a STARTED event (CLASS=20, TYPE=25) will be sent
when the relay goes to it's active state.

� bit 4 - If set an OFF event (CLASS=20, TYPE=4) will be sent when the
relay goes to it's inactive state.

� bit 3 - If set an ON event (CLASS=20, TYPE=3) will be sent when the
relay goes to it's active state.

� bit 2 - Enables the protection timer if set to one. See 1.7.6

� bit 1 - Alarm is sent if the protection timer elapses if this bit is set to one.

� bit 0 - Pulse output enabled if set to one. See 1.7.5

15

http://vscp.org/downloads.php

Mask bit n Filter bit n Incoming event class bit n Accept or reject bit n

0 x x Accept
1 0 0 Accept
1 0 1 Reject
1 1 0 Reject
1 1 1 Accept

Table 1.3: class/type �lter

1.7.3 Set/get relay state with register read/writes

A relay can be active (on) or inactive(o�). In registers 2-8 you can read or write
the status for an individual relay. A zero mean the relay is o�, and a one that
it is on. So writing a one to register 2 of a Paris relay module will turn relay
1 on. A better way is to use the decision matrix of the module to accomplish
this.

1.7.4 Set/get relay state using the decision matrix

Normally the decision matrix of the module is the best way to to handle relay
state changes. This much more �exible then to use the register writes directly.
This is also why the zone/sub-zone registers should be initialized with mean-
ingful values. The decision matrix of this module can have eight entries. Each
entry is a line that look for a speci�ed event on the bus and perform a speci�c
action if this event is found. Typically this can be a ON-event sent to a speci�c
zone/sub-zone. A row in the decision matrix can be setup to turn on one or
more relays if this event is detected and if the zone/sub-zone is right.

At �rst the setup of the decision matrix can be hard to grasp. You can read
all about it in the VSCP speci�cation section 7.3. Here we will just at a simple
example.

The decision matrix consist of seven bytes. The �rst byte is the originating
address. You can set a nickname here for the node that is allowed to trigger
(perform) a selected action. The control byte have con�guration bits(�ags) for
how the information should be interpreted. One bit (bit 6) tells if the originating
address should be checked or not. That is if bit 6 is set then the originating
address must be the same as the byte stored in the �rst byte of the decision
matrix to trigger the action. Bit 7 must always be set for the row to be compared
ton an incoming event. Bit four and �ve, if set, check if byte 1 and 2 of the
incoming event is the same as the zone/sub-zone stored in register3 0/1 of the
module.

Byte 2/3 together with bits 0/1 of the control register is the class mask and
�lter. A ninth bit is needed as a class consist of nine bits. Byte 4/5 is the type
mask and �lter. This is something most newcomers to VSCP have problems
with. But is is actually really simple.

The following table illustrates how this works

Think of the mask as having ones at positions that are of interest and the
�lter telling what the value should be for those bit positions that are of interest.

� So to only accept one class set all mask bits to one and enter the class in
�lter.

16

� To accept all classes set the class mask to 0. In this case �lter don't care.

� To accept everything set both masks to zero and the �lter to any value
you like.

Common cases are

1.7.4.1 You want to trigger on a speci�c event.

1. Set all bits of the class mask to ones (255 plus bit 1 of the control register
set to one) and all bits of the type mask to ones (255).

2. Write the class that should trigger the event into the class �lter (remember
that bit nine goes to bit 0 of the control byte) and the type to the type
�lter. So if you want to trigger on a TurnOn event which have CLASS=30,
TYPE=5 you set the class �lter = 30 (class bit i control byte to zero) and
the type �lter = 5.

3. Now if the originating address bit is not set and the row is enabled (bit 7
of the control register is set) and incoming event of the speci�ed type will
trigger the action.

1.7.4.2 You want to trigger on any event you get from a speci�c

module.

1. Enter the nickname of the module in the �rst byte of the decision matrix.

2. Set the control byte to 192 (bit 6 (check originating address) and bit 7
(enable decision matrix row) set).

3. Set byte 2-5 (masks and �lters) to zero. Actually class and type �lters can
have any value as long as the masks are zero.

4. Set the appropriate action/action parameter values. For example action=1
and action parameter = 3 (0b00000011) to activate relay 0 and 1 when
any event is received from the node.

The decision matrix makes it very easy to set up systems where one event
triggers actions on several modules. It is also easy to adopt your system to
new demands. You can add and replace modules without e�ecting the system
functionality.

1.7.5 Pulsing outputs

If you want your relay output to be turned on/o� with a certain interval the
Paris relay module automatically can handle this for you. First set the time the
relay should be on/o� in register 18-33. There are two registers for each relay
and the time is given in seconds. The lower byte holds the most signi�cant byte
and the higher byte holds the least signi�cant byte. As and example: If you
want relay 0 to have an output that is on for �ve minutes and then o� for �ve
minutes and so on you �rst calculate how many seconds the pulse time is. In
this case 5 * 60 = 300 seconds. This is what should go into register 18 and 19.
300/256 = 1 which is what should go into register 18 and the rest (300 - 1*256

17

= 44) 44 forms the least signi�cant byte and should go to register 19. To start
the pulse output you also have to set bit 0 in the corresponding relay control
register to one.

1.7.6 Protection timer

A protection timer can be convenient to use to protect a system form malfunc-
tions in some of it's components. Suppose you have a relay that controls a pump
that �lls a tank with some liquid. The pump should then be turned o� when
a the tanks is full which is indicated by an event from a sensor on the tank. If
this sensor is broken or the cable to the module is broken this event will not
be received. With the protection timer activated the pump will be turned of
anyway before things get to bad. It is also possible to send an alarm when this
happens to inform the rest of the system.

The protection timers are in registers 34-47 and comes, like the pulse reg-
isters, in pairs. The �rst byte in a pair holds the most signi�cant byte of the
timer and the second the least signi�cant byte. Also as for the pulse time the
time set is given in seconds. A maximum of 65535 seconds can thus be stored.
So the range is one seconds up to around eighteen hours.

The protection timer, if activated, is started when you activate the protected
relay. If the relay is active when the timer elapse it will be turned o�. If you
activate the relay again before the timer has elapsed the protection timer will
be resettled and start to count down from the preset value again. If you turn of
the relay the timer will be inactivated until the relay is activated again. Both
relay control through actions and register writes a�ects the timer.

1.7.7 Alarm

The module can send alarm events if the protection timer elapses. When an
alarm occurs a bit is set in the alarm register which is located in register position
128. You can always read this register to see if the module have sent out and
alarm events. When you read the register the alarm bits will be cleared.

1.8 Registers

All VSCP modules have a set of 8-bit registers de�ned. Some of them (regis-
ter 128-255) are prede�ned and the information in them are the same for all
VSCP modules. See the VSCP speci�cation for a description of their content
(http://sourceforge.net/projects/m2m/�les/VSCP%20Speci�cation/). The lower
128 register positions are used for module speci�c registers. It is normally here
you �nd registers with which you con�gure your module. You can also �nd
registers where you typically can read status information such as measurement
data from the module.

Below is a description of the registers on the Paris smart relay controller.

1.8.1 Zone registers

� Register 0(0x00) - Zone.

� Register 1(0x01) - Sub-zone.

18

http://sourceforge.net/projects/m2m/files/VSCP%20Specification/

1.8.2 Relay status registers

� Register 2(0x02) - Relay 1 Status register. Read/Write.

� Register 3(0x03) - Relay 2 Status register. Read/Write.

� Register 4(0x04) - Relay 3 Status register. Read/Write.

� Register 5(0x05) - Relay 4 Status register. Read/Write.

� Register 6(0x06) - Relay 5 Status register. Read/Write.

� Register 7(0x07) - Relay 6 Status register. Read/Write.

� Register 8(0x08) - Relay 7 Status register. Read/Write.

� Register 9(0x09) - Reserved.

Writing a value to the relay control register will activate/deactivate the relay
output.

� 0 - The relay is inactivated.

� 1 - The relay is activated.

Reading a value from the relay control register is read as a one if the relay is
activated and a 0 if the relay is deactivated.

1.8.3 Relay control registers

� Register 10(0x0A) - Relay 1 Control Register. Read/Write.

� Register 11(0x0B) - Relay 2 Control Register. Read/Write.

� Register 12(0x0C) - Relay 3 Control Register. Read/Write.

� Register 13(0x0D) - Relay 4 Control Register. Read/Write.

� Register 14(0x0E) - Relay 5 Control Register. Read/Write.

� Register 15(0x0F) - Relay 6 Control Register. Read/Write.

� Register 16(0x10) - Relay 7 Control Register. Read/Write.

� Register 17(0x11) - Reserved.

The relay control bits enable/disable intelligent relay functionality:

� Bit 0 - Enable pulsed output if set to one.

� Bit 1 - Alarm sent when protection timer triggers (if set).

� Bit 2 - Protection timer enable if set to one.

� Bit 3 - Send On event (CLASS=20, TYPE=3) when relay goes to active
state.

� Bit 4 - Send O� event (CLASS=20, TYPE=4) when relay goes to inactive
state.

19

� Bit 5 - Send Started event (CLASS=20, TYPE=25) when relay goes to
active state.

� Bit 6 - Send Stopped event (CLASS=20, TYPE=24)when relay goes to
inactive state.

� Bit 7 - If set to one the relay is enabled. If set to zero it is inactivated.

1.8.4 Relay pulse time registers

� Register 18(0x12) - On/o� pulse time Relay 1 (seconds) MSB. Read/Write.

� Register 19(0x13) - On/o� pulse time Relay 1 (seconds) LSB. Read/Write.

� Register 20(0x14) - On/o� pulse time Relay 2 (seconds) MSB. Read/Write.

� Register 21(0x15) - On/o� pulse time Relay 2 (seconds) LSB. Read/Write.

� Register 22(0x16) - On/o� pulse time Relay 3 (seconds) MSB. Read/Write.

� Register 23(0x17) - On/o� pulse time Relay 3 (seconds) LSB. Read/Write.

� Register 24(0x18) - On/o� pulse time Relay 4 (seconds) MSB. Read/Write.

� Register 25(x019) - On/o� pulse time Relay 4 (seconds) LSB. Read/Write.

� Register 26(0x1A) - On/o� pulse time Relay 5 (seconds) MSB. Read/Write.

� Register 27(0x1B) - On/o� pulse time Relay 5 (seconds) LSB. Read/Write.

� Register 28(0x1C) - On/o� pulse time Relay 6 (seconds) MSB. Read/Write.

� Register 29(0x1D) - On/o� pulse time Relay 6 (seconds) LSB. Read/Write.

� Register 30(0x1E) - On/o� pulse time Relay 7 (seconds) MSB. Read/Write.

� Register 31(0x1F) - On/o� pulse time Relay 7 (seconds) LSB. Read/Write.

� Register 32(0x20) � On/o� pulse time Relay 8 (seconds) MSB. Read/Write.

� Register 33(0x21) � Reserved.

This is the pulse time for the each relay expressed in seconds. This can be used
to have a relay turn on and o� with a certain preset interval. The minimum
pulse time is 1 second and the maximum time is 65535 seconds which is about
18 hours. Set to zero (default) for no pulse time i.e. the relay will be steady
on/o�.

To start a pulse sequence bit 0 for the corresponding relay should be set to
one.

20

1.8.5 Relay protection time registers

� Register 34(0x22) - Protection time Relay 1 (seconds) MSB. Read/Write.

� Register 35(0x23) - Protection time Relay 1 (seconds) LSB. Read/Write.

� Register 36(0x24) - Protection time Relay 2 (seconds) MSB. Read/Write.

� Register 37(0x25) - Protection time Relay 2 (seconds) LSB. Read/Write.

� Register 38(0x26) - Protection time Relay 3 (seconds) MSB. Read/Write.

� Register 39(0x27) - Protection time Relay 3 (seconds) LSB. Read/Write.

� Register 40(0x28) - Protection time Relay 4 (seconds) MSB. Read/Write.

� Register 41(0x29) - Protection time Relay 4 (seconds) LSB. Read/Write.

� Register 42(0x2A) - Protection time Relay 5 (seconds) MSB. Read/Write.

� Register 43(0x2B) - Protection time Relay 5 (seconds) LSB. Read/Write.

� Register 44(0x2C) - Protection time Relay 6 (seconds) MSB. Read/Write.

� Register 45(0x2D) - Protection time Relay 6 (seconds) LSB. Read/Write.

� Register 46(0x2E) - Protection time Relay 7 (seconds) MSB. Read/Write.

� Register 47(0x2F) - Protection time Relay 7 (seconds) LSB. Read/Write.

� Register 48(x030) - Protection time Relay 8 (seconds) MSB. Read/Write.

� Register 49(0x31) - Reserved.

This is the relay protection time. A relay will be inactivated if not written to
before this time has elapsed. Set to zero to disable (default). The max time is
65535 seconds which is about 18 hours.

The registers can for example be used as a security feature to ensure that
an output is deactivated after a preset time even if the controlling device failed
to deactivate the relay.

1.8.6 Relay zone information

� Register 50(0x32) - Relay 1 Sub Zone.

� Register 51(0x33) - Relay 1 Sub Zone.

� Register 52(0x34) - Relay 1 Sub Zone.

� Register 53(0x35) - Relay 2 Sub Zone.

� Register 54(0x36) - Relay 3 Sub Zone.

� Register 55(0x37) - Relay 1 Sub Zone.

� Register 56(0x38) - Relay 4 Sub Zone.

� Register 57(0x39) - Relay 1 Sub Zone.

21

� Register 58(0x3A) - Relay 5 Sub Zone.

� Register 59(0x3B) - Relay 1 Sub Zone.

� Register 60(0x3C) - Relay 6 Sub Zone.

� Register 61(0x3D) - Relay 1 Sub Zone.

� Register 62(0x3E) - Relay 7 Sub Zone.

� Register 63(0x3F) - Relay 1 Sub Zone.

� Register 64(0x40) - Reserved

� Register 65(0x41) - Relay 1 Sub Zone.

This is the zone and sub-zone value related to a speci�c relay. If zero the the
module Zone/sub-zone will be used.

1.8.7 Registers for decision matrix

� Register 72(0x48) - 127(0x7f) - Decision Matrix with seven rows.

1.9 Decision matrix

1.9.1 Action = 0(0x00)

NOOP, No action.

1.9.2 Action = 1(0x01)

Activate relay(s) given by argument. The argument is a bit array where bit
0 is relay 1 and so on. That is a position with a set bit will activate the
corresponding relay. Byte 1 is Zone and byte 2 is sub-zone and must be equal
to register content to trigger action.

1.9.3 Action = 2(0x02)

Deactivate relay(s) given by argument. The argument is a bit array where bit
0 is relay 1 and so on. That is a position with a set bit will inactivate the
corresponding relay. Byte 1 is Zone and byte 2 is sub-zone and must be equal
to register content to trigger action.

1.9.4 Action = 3(0x03)

Pulse relay(s) given by argument. The argument is a bit array where bit 0 is
relay 1 and so on. That is a position with a set bit will toggle the corresponding
relay. Byte 1 is Zone and byte 2 is sub-zone and must be equal to register
content to trigger action.

1.9.5 Action = 4(0x04)

Reserved.

22

1.9.6 Action = 5(0x05)

Reserved.

1.9.7 Action = 6(0x06)

Reserved.

1.9.8 Action = 7(0x07)

Reserved.

1.9.9 Action = 8(0x08)

Reserved.

1.9.10 Action = 9(0x09)

Reserved.

1.9.11 Action = 10(0x0a)

Send relay status. The argument is a bit array where bit 0 is relay 1 and
so on. That is a position with a set bit will have a status event sent for the
corresponding relay.

1.9.12 Action = 11(0x0b)

Reserved.

1.9.13 Action = 12(0x0c)

Reserved.

1.9.14 Action = 13(0x0d)

Reserved.

1.9.15 Action = 14(0x0e)

Reserved.

1.9.16 Action = 15(0x0f)

Reserved.

1.9.17 Action = 16(0x10)

Disable relay(s) given by argument. The argument is a bit array where bit 0 is
relay 1 and so on. That is a position with a set bit will disable the corresponding
relay. Byte 1 is Zone and byte 2 is zone page and must be equal to register
content to trigger action.

23

1.10 Alarm register

� Bit 0 Relay 1 protection timer has caused a relay action.

� Bit 1 Relay 2 protection timer has caused a relay action.

� Bit 2 Relay 3 protection timer has caused a relay action.

� Bit 3 Relay 4 protection timer has caused a relay action.

� Bit 4 Relay 5 protection timer has caused a relay action.

� Bit 5 Relay 6 protection timer has caused a relay action.

� Bit 6 Relay 7 protection timer has caused a relay action.

� Bit 7 Reserved

Read the register to clear alarm bits.

1.11 Events

1.11.1 On Event

If enabled the event is sent when a relay goes to its active state.

Class: 0x014 Type: 0x03

1.11.1.1 Package

� Byte 0: Index.

� Byte 1: Zone

� Byte 2: Sub-zone

Index is 0 for relay 1, 1 for relay 2 and so on. zone and sub-zone set accordingly.
Sub-zone for relay is used if it's not zero.

1.11.2 O� Event

If enabled the event is sent when a relay goes to its inactive state.

Class: 0x014 Type: 0x04

1.11.2.1 Package

� Byte 0: index.

� Byte 1: Zone

� Byte 2: Sub-zone

Index is 0 for relay 1, 1 for relay 2 and so on. Zone and sub-zone set accordingly.
Sub-zone for relay is used if it's not zero.

24

1.11.3 Stopped Event

If enabled the event is sent when a relay goes to its inactive state.

Class: 0x014 Type: 0x18

1.11.3.1 Package

� Byte 0: index.

� Byte 1: Zone

� Byte 2: Sub-zone

Index is 0 for relay 1, 1 for relay 2 and so on. Zone and sub-zone set accordingly.
Sub-zone for relay is used if it's not zero.

1.11.4 Started Event

If enabled the event is sent when a relay goes to its active state.

Class: 0x014 Type: 0x19

1.11.4.1 Package

� Byte 0: index.

� Byte 1: Zone

� Byte 2: Sub-zone

Index is 0 for relay 1, 1 for relay 2 and so on. Zone and sub-zone set accordingly.
Sub-zone for relay is used if it's not zero.

1.11.5 Alarm Event

If enabled the event is sent when a relay goes to its inactive state after a pro-
tection timer have timed out.

Class: 0x001 Type: 0x02

1.11.5.1 Package

� Byte 0: index.

� Byte 1: Zone

� Byte 2: Sub-zone

Index is 0 for relay 1, 1 for relay 2 and so on.

25

1.12 Where can I �nd the source code?

Most VSCP modules from Grodans Paradis AB is Open hardware/Open source
meaning that both the hardware information as well as the source code is avail-
able. This means that you can modify the source code and /or the hardware to
your speci�c needs if you want.

1.13 Appendix A - Mandatory VSCP registers.

26

Address Access Mode Description

0Ö00 � 0x7f � Device speci�c. Unimplemented registers should
return zero.

128/0Ö80 Read Only
Alarm status register content (!= 0 indicates
alarm). Condition is reset by a read operation. The
bits represent di�erent alarm conditions.

129/0Ö81 Read Only VSCP Major version number this device is
constructed for.

130/0Ö82 Read Only VSCP Minor version number this device is
constructed for.

131/0Ö83 Read/Write Node control �ags
Bit Description

7 Start-up control
6 Start-up control
5 r/w control of registers

below 0Ö80. (1 means
write enabled)

4 Reserved
3 Reserved
2 Reserved
1 Reserved
0 Reserved

132/0Ö84 Read/Write User ID 0 � Client settable node id byte 0.
133/0Ö85 Read/Write User ID 1 � Client settable node id byte 1.
134/0Ö86 Read/Write User ID 2 � Client settable node id byte 2.
135/0Ö87 Read/Write User ID 3 � Client settable node id byte 3.
136/0Ö88 Read/Write User ID 4 � Client settable node id byte 4.
137/0Ö89 Read only Manufacturer device ID byte 0.
138/0x8a Read only Manufacturer device ID byte 1.
139/0x8b Read only Manufacturer device ID byte 2.
140/0x8c Read only Manufacturer device ID byte 3.
141/0x8d Read only Manufacturer sub device ID byte 0.
142/0x8e Read only Manufacturer sub device ID byte 1.
143/0x8f Read only Manufacturer sub device ID byte 2.
144/0Ö90 Read only Manufacturer sub device ID byte 3.
145/0Ö91 Read only Nickname id for node if assigned or 0x� if no

nickname id assigned.
146/0Ö92 Read/Write Page select register MSB
147/0Ö93 Read/Write Page Select register LSB
148/0Ö94 Read Only Firmware major version number.
149/0Ö95 Read Only Firmware minor version number.
150/0Ö96 Read Only Firmware sub minor version number.
151/0Ö97 Read Only

Boot loader algorithm used. 0X� for no boot loader
support. Codes for algorithms are speci�ed here
VSCP_event_class_000 for Type = 12

152/0Ö98 Read Only Bu�er size. The value here gives an indication for
clients that want to talk to this node if it can
support the larger mid level Level I control events
which has the full GUID. If set to 0 the default size
should used. That is 8 bytes for Level I and 512-25
for Level II.

153/0Ö99 Read Only Number of register pages used. If not implemented
one page is assumed.

154/0x9A-207/0xcf � Reserved for future use. Return zero.
208/0xd0-223/0xdf Read Only 128-bit (16-byte) globally unique ID (GUID)

identi�er for the device. This identi�er uniquely
identi�es the device throughout the world and can
give additional information on where driver and
driver information can be found for the device.
MSB for the identi�er is stored �rst (in 0xd0).

224/0xe0-255/0x� Read Only
Module Description File URL. A zero terminates
the ASCII string if not exactly 32 bytes long. The
URL points to a �le that gives further information
about where drivers for di�erent environments are
located. Can be returned as a zero string for
devices with low memory. It is recommended that
unimplemented registers read as ox�. For a node
with an embedded MDF return a zero string. The
CLASS1.PROTOCOL, Type=34/35 can then be
used to get the information if available.

Table 1.4: VSCP mandatory registers27

Index

+12V, 13
+24V, 13
+5V, 13

Action, 22, 23
action, 16
Alarm, 15, 18
alarm, 18
Alarm Event, 25
Alarm register, 24
Alarm status register, 27
AWG24, 11

boot loader, 15
Boot loader algorithm, 27
boot-loader, 14

Cable length, 11
CAN, 11
CANH, 9, 11
CANL, 9, 11
CAT5, 6, 9, 11
class, 17
class �lter, 16, 17
class mask, 16, 17
class/type �lter, 16
con�guration, 15
con�guration bits, 16
Con�gure, 15
Connection of relay, 14
connectors, 9
control byte, 17
control registers, 19
current, 12

Daisy chain, 12
daisy chain, 12
Decision matrix, 22
decision matrix, 16, 17, 22
Drops, 11

Events, 24

�rmware, 14
�y-back protection diodes, 13
free nickname, 12

green lamp, 12
Ground, 13
GUID, 27

Hardware, 7

ICD-2, 14
ICD-3, 14
ICE, 14
ICP connector, 14
inductive loads, 14
initializing button, 12
Installing, 12

JP1, 13

key positions, 9

least signi�cant byte, 17

maintenance, 15
Mandatory VSCP registers, 26
MDF, 6
Microchip microprocessor, 14
Module Description File, 6, 27
most signi�cant byte, 17
MPLAB, 14

nickname, 16, 17
nickname address, 12

OFF event, 15
O� Event, 24
o�cial �rmware, 14
ON event, 15
On Event, 24
on-board terminator, 11
Open hardware, 26

28

Open source, 26
originating address, 16, 17

PIC1, 15
PICKIT-2, 14
PICKIT3, 14
Pin-out, 13
Power, 12
power, 12, 13
power source, 12
programming socket, 14
Protection timer, 18
protection timer, 15, 18
protection timers, 18
Pulse output, 15
pulse registers, 18
pulsed output, 19
Pulsing outputs, 17

Real ICE, 14
red led, 12
Registers, 18
registers, 15
relay control bits, 19
Relay protection time, 21
Relay pulse time, 20
relay state, 16
relay state changes, 16
relay status, 16
Relay status registers, 19
relay voltage, 13
Relay zone, 21
remotely program, 14
resistive load, 14
RJ-45, 6
RJ-45 pin out, 10
RJ-XX, 9
RJ10, 9
RJ11, 9
RJ12, 9
RJ45, 9, 12

Schema, 8
source code, 26
STARTED event, 15
Started Event, 25
status checks, 15
status information, 18
STOPPED event, 15
Stopped Event, 25

sub-zone, 15
supply voltage, 13

T568B, 10
terminated, 11
Termination, 11
termination, 11
Termination block, 13
termination block, 13
terminations, 11
Terminators, 11
trigger action, 17
TurnOn event, 17
twelve position termination block, 13
twisted cable, 9
twisted pair cable, 9
type mask, 17

Update �rmware, 14
Updating �rmware, 14

voltage, 12
VSCP & Friends package, 15
VSCP speci�cation, 15, 16, 18
VSCP Works, 14, 15
VSCP works, 15

wizard, 15

Zone, 15
Zone registers, 18

29

	Paris - smart VSCP relay module
	Most current information
	The raw facts
	Hardware
	Cable and connectors
	RJ-XX pin-out
	Cable length
	Termination
	Why are terminators required?

	Daisy chain connector
	Power the module

	Installing the module
	Termination block pin-out

	Updating firmware
	Update firmware using the ICP connector
	Update firmware with VSCP Works

	Configure the module?
	Zone/sub-zone
	Functionality for the relays
	Set/get relay state with register read/writes
	Set/get relay state using the decision matrix
	You want to trigger on a specific event.
	You want to trigger on any event you get from a specific module.

	Pulsing outputs
	Protection timer
	Alarm

	Registers
	Zone registers
	Relay status registers
	Relay control registers
	Relay pulse time registers
	Relay protection time registers
	Relay zone information
	Registers for decision matrix

	Decision matrix
	Action = 0(0x00)
	Action = 1(0x01)
	Action = 2(0x02)
	Action = 3(0x03)
	Action = 4(0x04)
	Action = 5(0x05)
	Action = 6(0x06)
	Action = 7(0x07)
	Action = 8(0x08)
	Action = 9(0x09)
	Action = 10(0x0a)
	Action = 11(0x0b)
	Action = 12(0x0c)
	Action = 13(0x0d)
	Action = 14(0x0e)
	Action = 15(0x0f)
	Action = 16(0x10)

	Alarm register
	Events
	On Event
	Package

	Off Event
	Package

	Stopped Event
	Package

	Started Event
	Package

	Alarm Event
	Package

	Where can I find the source code?
	Appendix A - Mandatory VSCP registers.

